Based on Chemistry, Expand Beyond Chemistry.

Daicel was initially rooted in the production of celluloid. More recently, our core technologies have encompassed cellulose chemistry, organic chemistry, polymer chemistry, and pyrotechnic engineering. Daicel is expanding its business areas beyond the bounds of the chemical industry such as automobile airbag inflator besides various chemical products. In the future, we take pride in providing the best solutions based on our unique technologies.
The Best Solution for You

Contributing to an improved quality of life

At the Daicel Group, we believe in the unlimited potential of chemistry. By applying our unique technologies and expertise in the most effective manner, we are meeting the diverse needs of society. Our industrial group contributes to a better society and an improved quality of life.
Process of Operational Development
Building a Promising Future on a Foundation of Leading Technologies
Cellulosic Derivatives

Daicel’s history began with the manufacture of celluloid from cellulose nitrate, a cellulosic derivative. Today, one of our core businesses — derived from our celluloid production technology — is production of various cellulosic derivatives such as cellulose acetate, acetate tow for cigarette filters, and water-soluble polymers.

Cellulose Acetate

Cellulose acetate is made from natural cellulose such as linter or pulp. Thanks to its outstanding chemical resistance, heat resistance, and flame-retardant characteristics, cellulose acetate has wide application in LCD optical films, cigarette filters, acetate fiber, photographic film, plastics, and separation membranes, among other uses.

Cellulose acetate is a sustainable material that is friendly to both people and the environment.

Acetate Tow

Acetate tow for cigarette filters is a mesh structure of fibers made from cellulose acetate. It is highly effective at removing toxic substances such as tar and nicotine without spoiling the cigarette’s flavor or aroma. For these reasons, acetate tow is used in the majority of filtered cigarettes sold around the world. With customers in more than 20 countries, we have built a global supply chain. This enables us to accommodate the needs of our customers around the world with exceptional flexibility.

TAC (TriAcetyl Cellulose)

Tri-Acetyl Cellulose, which has been used as the base material for photographic film, is used in optical films such as protective films for LCD polarizing panels used in LCD TVs, notebook computers, and mobile phones. Cellulose acetate also holds great potential in light of advances in optical imaging technology.
Water-soluble Polymer Products

- Anionic cellulose derivative
 - Carboxymethyl cellulose (CMC)
- Non-ionic cellulose derivative
 - Hydroxyethyl cellulose (HEC)
- Microfibrillated fibers
 - CELUSH

Various water-soluble polymer products can be found in many of the products we use every day, including foodstuffs, pharmaceuticals, cosmetics, and electronic materials.

Cellulose Plastics

Daicel began as a celluloid manufacturer; later, we began producing cellulose acetate plastic, which mirrors the advantages of celluloid with the added benefit of flame resistance. Highly transparent, tough and hygroscopic, cellulose plastics can be processed in a variety of colors, lusters, patterns, and pleasing textures unattainable with other plastics. This material has remained highly popular for decades.

Main Products

- Cellulose acetate
- Acetate tow for cigarette filters
- Water-soluble polymers

Cellulose Acetate Manufacturing Facility
Organic Chemicals

Daicel’s line of organic chemicals includes various solvents and fine chemicals; acetic acid, our flagship product; and acetic anhydride, the main raw material for cellulose acetate. These chemicals are used in a wide variety of applications.

- Organic acids
- Organic acid anhydrides
- Esters of organic acids
- Solvents
- Ketene or Diketene derivatives
- Amines

We develop and manufacture general-use organic chemical products made from acetic acid, fine chemical products, and organic designed products developed with our proprietary reaction technology. We also formulate optical resolution columns and related solutions for the development of medical products. We are developing our organic chemical businesses globally.

Using Bioethanol as a Raw Material in Chemical Manufacturing

We are developing sustainable chemical product manufacturing that is not dependent upon fossil fuels. Our approach is to switch to a method utilizing bio-ethanol, which is produced from biomass, as a raw material for producing ethylamines and ethyl acetate.
Performance Chemicals

Our organic designed products such as epoxy compounds produced from an epoxidation reaction technology with peracetic acid and caprolactone and its derivatives are useful in a broad range of industrial applications including coating ingredients, plastic reforming, and electronic materials. Epoxy-based products made with alicyclic epoxy resins and functional products made with acid anhydride are used for LEDs, semiconductors and other products.

LED encapsulant / OLED panel sealants CELVENUS

Building on our alicyclic epoxy resin encapsulants, which hold the largest share of the global market, we are expanding our portfolio of LED encapsulant products. We offer various product lines including an epoxy system, a silicone series, and a non-epoxy ultra-heat-resistant series. This enables us to offer a one-stop solution for outdoor lighting, LCD backlighting, and other lighting applications. In addition, we have introduced OLED panel sealants incorporating ultra-high water vapor barriers. We will respond to customer feature requests with our integrated development system that encompasses everything from raw materials to sealants.

Chiral Chemicals

Daicel is a leading supplier of chiral columns for the development of medical products. We support low-cost production and accelerated research and development of new chiral medical supplies by offering a diverse line of chiral columns in various sizes, thus meeting the diverse needs of customers. In addition, with our industry-leading optical resolution technology, we can provide contract services for separation and purification of chiral enantiomers.

Chiral enantiomers are separated and purified with our industry-leading optical resolution technology (chiral SMB method) under GMP management. Moreover, Daicel supports low-cost production and accelerated research and development of new chiral medical supplies by offering a diverse line of optical resolution columns.

Main Products

Acetic acid and other organic chemicals
Fine chemical products
Photoresist polymers
Encapsulants/Sealing materials
Optical resolution columns
Synthetic resin emulsions
Engineering Plastics

- Polyacetal (POM) DURACON
- Polybutylene terephthalate (PBT) DURANEX
- Polyphenylene sulfide (PPS) DURAFIDE
- Liquid crystal polymers (LCP) LAPEROS

These diverse engineering plastics are used for reducing vehicle weight; increasing fuel efficiency; and increasing the performance of computers, mobile phones, and other electronic devices. They contribute to society’s development and an improved quality of life.

Plastic Compounds

- Styrenic resins CEVIAN
- Polymer alloys with engineering plastics NOVALLOY
- Long fiber-reinforced plastics PLASTRON
- Conductive and anti-static plastic compounds
- Cellulose bio-plastics made from non-edible wood sources CELBLEN EC

Our various thermoplastic compound products, developed to meet emerging needs, are used extensively for electrical and office equipment and in the IT and automotive industries.
High Performance Polymers

- PA12 DAIAMID VESTAMID
- PA12 Powder VESTOSINT
- Transparent PA TROGAMID
- PEEK VESTAKEEP
 (Polyether Ether Ketone)
- C8&C12 Monomers

High performance polymer’s products lineup is wide such as PA12, transparent PA, cyclic C8&C12 synthetic compounds and PEEK. These polymers are used extensively for traffic, electronics, energy, medical, sports and other fields.

Vacuum and Pressure Formed Products

We offer functional formed trays such as packaging for cookies, chilled foods, and frozen foods. They are also used in the transport of liquid crystal modules and electronic parts. In addition, we develop eco-friendly products made from materials sourced from biomass.

Coating Films

We provide various kinds of highly functional packaging films for use mainly as barrier coating films.

- Barrier coating
- Heat-sealable coating
- Release coating for foods

Moreover, we provide high-performance films by employing our longstanding coating technology and utilizing a variety of polymer materials from the Daicel Group.

Low-density Foam Products

Through the production of low-density foam products, we provide high-quality cushioning for industrial and civil engineering applications as well as cushioning materials for fruit packaging. We manufacture these products using a CPC-free foaming process. These recyclable ultra-light, ultra-low-density foam net products, made from recyclable non-cross-linked polyethylene, are especially popular for use in fruit packaging in Japan.

Main Products

- Polyacetal (POM)
- Polybutylene terephthalate (PBT)
- Polyphenylene sulfide (PPS)
- Liquid crystal polymers (LCP)
- Cyclic-olefine copolymer (COC)
- Styrenic resins, Polymer alloys
- Long-fiber-reinforced thermoplastic
- Polyamide-12 resin
- Polyether Ether Ketone (PEEK)
- Polystyrene sheets, Various formed trays
- Packaging barrier film, Various functional films
- Low-density foam products
- Various processed plastic products
Our pyrotechnic business began with the production of a single-base propellant. We have since developed advanced products for the national defense market by combining organic synthesis, polymer chemistry, plastic molding, and assembly technologies.

In addition, we have used our proprietary pyrotechnic technologies to develop airbag inflators, the most critical components of airbag systems for motor vehicle safety. The automobile airbag inflator business has grown to become one of our core businesses, demonstrating how we have expanded beyond the bounds of the chemical industry.

Airbag Inflators

Advanced technologies originating in the aerospace, chemical, mechanical, electrical, and electronics industries are embodied in the automobile airbag inflator (gas generator). Inflators are key safety devices at the heart of the airbag system. When the crash sensor detects a collision, it inflates the airbag within milliseconds.

Daicel manufactures and sells various inflators for all vehicle installation locations as well as PGG micro gas generators for seatbelt pretensioners.
Aerospace & Defense Systems
We have leveraged our experience producing gunpowder and composite propellants to manufacture a range of pyrotechnic products. These include rocket motors for missiles and propellant-powered emergency escape systems for pilots.

Gunpowders
Daicel manufactures single-base gunpowders made from nitrocellulose, double-base gunpowders made from nitrocellulose and nitroglycerine, and triple-base gunpowders incorporating nitroguanidine.

Propellants
Daicel manufactures composite propellants as well as rocket motors for missiles utilizing composite propellants. Moreover, we are involved in the research and development of more advanced propellants.

Plastic Shotgun Cartridges for Trapshooting
Plastic shotshell cartridges are used for sport and leisure applications such as hunting and trapshooting.

Main Products
- Automobile airbag inflators (gas-generating devices)
- Micro gas generators for seatbelt pretensioners (PGG)
- Gunpowders
- Composite propellants
- Rocket motors for missiles
- Pilot emergency-escape systems
- Various pyrotechnic devices
Membrane Products

Our membranes have won acclaim and are used extensively in industries ranging from water treatment to food and other areas that are part of everyday life. The cellulose acetate hollow-fiber ultrafiltration (UF) membrane module is in common use in many water plants, contributing greatly to improved water quality.

Water Treatment Systems

Our group is developing water treatment systems incorporating separation membranes with a focus on reduced environmental impact and lower cost. Our advanced water treatment systems employing separation membranes help to improve the environment by reducing environmental impacts while contributing to the recovery and recycling of wastewater.

PEARLCOMB
Ultra-Fine Bubble Membrane Diffuser

Sewage treatment plants utilizing activated sludge treatment have been requesting more energy-efficient aeration blowers. PEARLCOMB membrane diffuser generates ultra-fine bubbles measuring less than 1 mm in diameter over the entire surface of the ultrafine bubble processing tank. This increases the energy efficiency of oxygen transfer compared to conventional air diffusers, which generate bubbles measuring about 4 mm in diameter. This approach reduces the blast volume of the aeration blower by about 30%.

Daicen Membrane-Systems Ltd., a joint venture with Central Filter Mfg., develops water treatment systems and contributes to environmental protection and the betterment of society.

The company focuses on the technical development of separation membrane modules for various water treatment processes and manufactures and distributes water treatment systems and diffusers for a range of industrial applications.

Cellulose Acetate Hollow Fiber Membrane

Main Products

- Separation membranes (reverse osmosis membranes and ultrafiltration membranes) & membrane modules
- Various water treatment systems (including medical systems and wastewater treatment systems)
- Air diffusers

Principal Affiliates

- Daicen Membrane-Systems Ltd.
New Business Creation

To become an ideal company as declared in our long-term Grand Vision 2020, Daicel is developing a variety of products, setting the main target field as electronics, energy & environment, and medical & healthcare.

Working closely with their corresponding business departments and group companies, our Corporate Planning and Research departments are now creating innovative products and developing new markets for these fields.

Electronics

Temporary adhesive

This functional material features adhesion and separation properties resulting from our proprietary compounding technology. Its high adhesion across a wide range of temperatures and ease of separation have made it an ideal choice for use in semiconductor packaging processes.

Silver nano ink (Picosisil)

Picosisil is an electroconductive silver nano ink intended for direct drawing of bezel electrodes for touch panels, organic electroluminescent displays, and bus electrodes and compensation electrodes for solar cells. It can be sintered quickly at temperatures as low as 120°C. As a high-metal-loaded paste, it can be used to form thick lines, making possible narrow lines with low resistance.

High performance film

Our proprietary coating technology enables us to offer a variety of hard coating films, including a film that reduces glare even on high-definition displays, a shutterproof film for capacitance touch panels that resists the formation of water marks, an ultra-long-life anti-newton ring film for resistance touch panels, and a film for improved stylus input offering pencil-like writing properties.

Medical / Healthcare

Co-processed excipient for orally disintegrating tablets (GRANFILLER-D)

GRANFILLER-D is a co-processed excipient used in the manufacture of orally disintegrating tablets. This excipient, functionally designed under original composition and granulating conditions with multiple excipients, provides both the required tablet hardness and quick oral disintegration. Furthermore, its high dose capacity contributes to reduced tablet size, while its excellent water conductivity achieves faster disintegration than is possible with conventional technologies.

Functionality materials for healthcare

Building on our technologies for extracting and fermenting natural products, Daicel develops products incorporating our unique functional materials for the healthcare industry. These include equol derived from soybeans, ceramide derived from konjac root, lactobionic acid derived from milk, and beta-cryptoxanthin derived from Citrus unshiu. Daicel plans to expand the scope of these functional materials by entering the health food and cosmetics markets.

Nano inorganic materials

Nanodiamonds

Daicel generates diamond particles having an average size of 4-5 nm by detonating mixed explosives under sealed conditions. Our pilot detonation facility began operation in 2014. Moreover, through the chemical purification and the disintegration treatment of the crude product obtained by detonation, we have succeeded in developing a water dispersion of single-digit nanodiamonds.

Daicel is now developing various applications, taking advantage of these unique characteristics.

Visible light responsive photocatalyst (CelMuse)

While most conventional photocatalysts are the outdoor ultraviolet light-responsive type, Daicel has succeeded in developing a visible light-responsive catalyst that responds to fluorescent and low-intensity indoor light, such as that produced by LEDs. It is used for a variety of purposes, including interior materials, coatings and filters.
Global Locations

Creating Value Through Chemistry Developing Excellent Businesses with a Global Presence

Main Locations in Japan

- Osaka Head Office
- Tokyo Head Office
- Himeji Technology Head Office
- Nagoya Sales Office
- HLR Training Center
- Central Research Center
- Polyplastics Co., Ltd. Fuji Plant
- Himeji Production Sector / Aboshi Plant
- Himeji Production Sector / Hirohata Plant
- Harima Plant
- Ohtake Plant
- Kanzaki Plant
- Advanced Materials Research Center
- Arai Plant
- Green Product Development Center
- Green Product Development Center
Main Locations outside Japan

1. Germany
 Daicel (Europa) GmbH
 Polyplastics Europe GmbH
 Topas Advanced Polymers GmbH
 LCP Eurosar Carboxylation Plant GmbH

2. Poland
 Daicel Safety Systems Europe Sp. z o. o.

3. France
 Chiral Technologies Europe S.A.S.

4. New Jersey, U.S.A.
 Daicel (U.S.A.), Inc.

5. Pennsylvania, U.S.A.
 Chiral Technologies, Inc.

6. Kentucky, U.S.A.
 Daicel Safety Systems America, LLC
 Daicel Safety Technologies America, Inc.
 Daicel Safety Tube Processing, Inc.

7. Arizona, U.S.A.
 Special Devices, Inc.
 Daicel Safety Systems America Arizona, Inc.

8. Michigan, U.S.A.
 Polyplastics USA, Inc.

9. Mexico
 Polyplastics Marketing Mexico, S.A.de C.V.

10. Mumbai, India
 Polyplastics Marketing (India) Pvt. Ltd.

11. Hyderabad, India
 Daicel Chiral Technologies (India) Pvt. Ltd.

12. Thailand
 Daicel Safety Systems (Thailand) Co., Ltd.
 Daicel Safety Technologies (Thailand) Co., Ltd.
 Daicel Polymer (Thailand) Co., Ltd.
 Polyplastics Marketing (T) Ltd.
 Special Devices (Thailand) Co., Ltd.

13. Malaysia
 Polyplastics Asia Pacific Sdn. Bhd.

14. Korea
 Daicel Safety Systems Korea, Inc.
 Polyplastics Korea, Ltd.

15. Shaanxi, China
 Xi’an Huida Chemical Industries Co., Ltd.
 Xi’an Da-an Chemical Industries Co., Ltd.

16. Guangxi, China
 Daicel Nanning Food Ingredients Co., Ltd.

17. Jiangsu, China
 Daicel Safety Systems (Jiangsu) Co., Ltd.
 Polyplastics (Nantong) Ltd.
 PTM Engineering Plastics (Nantong) Co., Ltd.

18. Shanghai, China
 Daicel (China) Investment Co., Ltd.
 Daicel Trading (Shanghai) Ltd.
 Daicel Chiral Technologies (China) Co., Ltd.
 Polyplastics Trading (Shanghai) Ltd.
 Polyplastics (Shanghai) Ltd.
 Shanghai Daicel Polymers Ltd.
 Shanghai Da-shen Cellulose Plastics Co., Ltd.

19. Zhejiang, China
 Ningbo Da-an Chemical Industries Co., Ltd.

20. Taiwan
 Polyplastics Taiwan Co., Ltd.

21. Hong Kong
 Daicel Polymer (Hong Kong) Ltd.
 Polyplastics China Ltd.

22. Singapore
 Daicel (Asia) Pte. Ltd.
 Polyplastics Asia Pacific Singapore Pte. Ltd.
Chronology

Daicel’s History of Monozukuri

Monozukuri: Innovation & creation of significant value

History prior to the Establishment of Our Business

1908 Sakai Celluloid Co., Ltd. and Japan Celluloid Artificial Co., Ltd. are established.
1909 Mikuni Celluloid Limited Partnership and Notoya Celluloid Plant are established.
1916 Osaka Seni Kogyo Co., Ltd. and Togawa Celluloid Plant, Toyo Celluloid are established.
1917 Tokyo Celluloid Co., Ltd. is established. Thereafter, a succession of various celluloid material manufacturing companies were established and competition among these companies became increasingly severe. As a result, the celluloid industry was forced to reorganize.

Establishment

1919 September Dainippon Celluloid Company Limited, with plants in Sakai, Kanazawa, Aboshi, and Tokyo, is created through the above-mentioned eight celluloid producers.
1927 July Mikuni Celluloid Co., Ltd. (later Mikuni Plastics Co., Ltd.) is established and begins celluloid processing operations.
1928 May A photographic film testing plant (film lab) is established within the Tokyo Plant.

The 1930s

1929 June The cellophane production business is launched at the Kanazawa Plant.
1934 January The Company’s photographic film operations are spun off to form Fuji Photo Film Co., Ltd. (currently FUJIFILM Corporation).
1935 September The new Arai Plant is established in Nigata Prefecture and begins producing acetylone-base organic chemicals.
1938 June The Arai Plant is established and begins operation as a cellulose acetate production facility.

The 1950s

1953 July The Aboshi Plant begins manufacturing biaxially oriented cellulose (TAC) for use in photographic film and begins supplying Fuji Photo Film Co., Ltd.
1954 January The Kawachi Sub-Plant (currently the Harima Plant) as a separate plant of the Aboshi Chemical Plant is established and begins manufacturing smokeless gunpowder.
1956 September Dainippon Plastics Co., Ltd. is established and begins plastic processing operations.
1958 August The Sakai Plant begins full-scale manufacturing of acetate tow for cigarette filters.
1959 March The Nagoya Office (currently the Nagoya Sales Office) is established.

The 1960s

1961 January Dainippon Kasei Co., Ltd. is established and begins petrochemical operations.
February The Sakai Plant is established as a SAN resin manufacturing facility.
June The Central Research Center is established in Iruma-gun, Saitama prefecture.
1964 May Polyplastics Co., Ltd. is established as a joint venture to produce polypropylene.
1966 February The Company is renamed Daicel Co., Ltd.
1967 May Polyplastics establishes its Fuji Plant.
1968 June Dainippon Kasei Co., Ltd. is acquired, and its Ohtake Plant becomes Daicel’s Ohtake Plant.
August The Sakai Plant begins manufacturing ABS resin.
1969 March The Kanzaki Plant commercializes biaxially oriented PP film and PVDC-coated BOPP film. The Tokyo Plant is closed and celluloid production is concentrated in the Aboshi Plant.
May The Aboshi Plant begins manufacturing CMC.

The 1970s

1970 July Daicel-Huls Ltd. (currently Daicel-Evonik Ltd.) is established as a joint venture and begins marketing Polyamide-12 resin.
1977 July Kyodo Sakusan Co., Ltd. is established as a joint venture.
1979 September Begins production of acetic acid using the methanol carbonylation process.
October The Company is renamed Daicel Chemical Industries, Ltd.

The 1980s

1980 November The Himeji Research Center is established and absorbs the existing Central Research Center.
1984 April Daicel (U.S.A.), Inc. is established in the U.S.A.
November Daicel (Europe) GmbH is established in Germany.
1988 September Daicel Finance Ltd. is established as a financial subsidiary.
1989 May Daicel-UCB Company, Ltd. (currently Daicel-Cytec Company, Ltd.) is established as a joint venture for the production and sales of ultraviolet and electron-beam curable resins.
June Polyplastics establishes Taiwan Engineering Plastics Co., Ltd. (currently Polyplastics Taiwan Co., Ltd.) as a joint venture to produce and sell POM in Taiwan.
October Daicel Safety Systems Inc. is established as an automobile airbag inflator production subsidiary.
1989 May Daicel Chemical Asia Pte. Ltd. is established in Singapore.
September Tsukuba Research Center is established in Tsukuba, Ibaraki prefecture.

The 1990s

1990 November A facility for manufacturing acetate tow for cigarette filters is established in the Aboshi Plant, thus creating the twin hub system in Sakai and Aboshi.
The Aboshi Plant begins manufacturing TAC for LCD optical films.
1991 October Chiral Technologies, Inc. is established in the U.S.A. as the hub of the optical resolution business.
1992 July Xilin Huida Chemical Industries Co., Ltd. is established as a joint venture in China to manufacture and sell acetate tow for cigarette filters.
1993 June The Hino Plant is established in the Himeji Production Sector in Himeji, Hyogo prefecture.
1994 March Daicel Kraft Ltd. (currently Daicel FinoChem Ltd.) establishes Shanghai Da-shen Cellulose Plastics Co., Ltd. as a joint venture in China to manufacture and sell cellulose and acetate plastic.
1995 October Dacon Membrane-Systems Ltd. is established as a joint venture to manufacture and sell membrane modules for water treatment.
November Shanghai Daicel Polymers, Ltd., a resin compound manufacturing company, is established in Shanghai, China.
1996 October Chiral Technologies-Europe SARL (currently Chiral Technologies Europe S.A.S.) is established in France as a European hub for the optical resolution business.
1997 March Polyplastics establishes Polyplastics Asia Pacific Sdn. Bhd. in Kuala Lumpur, Malaysia.
1998 April The H.R. Training Center is established in Ako-gun, Hyogo.
1999 April Toyostrene Co., Ltd. is established as a joint venture.

2000~
The 2000s

2000 March
The Integrated Production Center (IPC) is established in the Aboishi Plant of the Himeji Production Sector and begins integrated operation.

December
Daicel Safety Systems America, LLC, a joint venture, is established as the U.S. hub for automobile airbag inflators.

2001 January
Resin compound operations are spun off and Daicel Polymer Ltd. is established and begins operations. The plastic sheet forming business is spun off and Daicel Pack Systems, Ltd. is established and begins operations.

October
Daicel Kaseihin Co., Ltd. and Daicel Craft Ltd. are merged to establish Daicel FineChem Ltd. to strengthen the trading functions of the Daicel Group and begins operations.

Ngano Novelfoam Ltd. and West Japan Novelfoam Ltd. merge to form Daicel Novelfoam Ltd., a subsidiary involved in plastic foaming products.

December
Polyplastics establishes PTM Engineering Plastics (Nantong) Co., Ltd. in Nantong, China, as a joint venture to undertake POM production.

2002 September
Daicel acquires a company involved in the manufacture and sales of sorbic acid and other products to establish and begin operations at Daicel Nanning Food Ingredients Co., Ltd. in China.

Daicel Safety Systems (Thailand) Co., Ltd. is established in Thailand as a production and sales hub for automobile airbag inflators.

2004 March
Daicel Safety Systems Europe Sp.z o.o. is established in Poland as the European hub of automobile airbag inflator production.

April
The package film business is spun off and Daicel Value Coating Ltd. is established and begins operations.

July
Daicel Chemical (China) Investment Co., Ltd. is established in Shanghai to manage Chinese manufacturing and marketing operations.

2006 September
The Tsukuba Research Center is closed and its functions are transferred to the Himeji Research Center and Arai Plant.

2007 August
Daicel Chiral Technologies (China) Co., Ltd. is established in Shanghai.

October
The Ohtake Plant is established as a manufacturing facility for acetate tow for cigarette filters.

2008 March
The Sakai Plant is closed after a part of its premises is expropriated for construction of the Yamatogawa Line of the Hanshin Expressway.

Danripplastics Co., Ltd. is transferred to Taiiron Co., Ltd.

April
Daicel Chiral Technologies (India) Pvt. Ltd. is established in Hyderabad, India.

May
The Ohtake Plant is established as a TAC manufacturing facility for LCD optical films.

October
Mitru Plastics Co., Ltd. transfers its entire business to Aron Kasei Co., Ltd.

2009 March
Construction of the ethyl acetate manufacturing facility using esterification process is completed.

2011 March
Historical materials in relation to celluloid recognized as "Chemical Heritage"

April
The Green Product Development Center is established in the Arai Plant.

October
The Company is renamed Daicel Corporation.

The Company established a group symbol.

2012 December
Daicel Safety Systems Korea, Inc. is established in Korea.

Daicel Novatorm Ltd. (a subsidiary for high foam plastic products businesses) merged with Tohoku Polymer Ltd. (a Mitsui Chemical's subsidiary), and established DM Novatorm Ltd.

Daicel Polymer (Thailand) Co., Ltd. is established in Thailand.

Special Devices Inc. as a manufacturer of inflators is purchased and transformed into our subsidiaries.

Daicel establishes a joint venture by acquiring 25% of the outstanding shares of Toyama Filter Tow Co., Ltd., an acetate tow manufacturing subsidiary of Mitsubishi Rayon Co., Ltd.

2013 May
Acquired Unitika's "Health & Amenity" business.

Daicel Safety Systems America, Inc. is established as the 2nd Manufacturing Plant of the inflator in the Americas.

2015 March
Ningbo Da-An Chemical Industries Co., Ltd. is established as a joint venture in China to manufacture and sell cellulose acetate and acetate anhydrate.

2006 January
Topas Advanced Polymers GmbH is established in Germany, acquires Ticona's cyclic olefin copolymer business, and begins production.